Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes \textit{in vivo}

Frank M. Klenke,1,2 Yuelian Liu,3,4 Huipin Yuan,5 Ernst B. Hunziker,4 Klaus A. Siebenrock,2 Willy Hofstetter1

1Department Clinical Research, Group for Bone Biology and Orthopedic Research, University of Berne, CH-3010 Berne, Switzerland
2Department of Orthopedic Surgery, Inselspital, University of Berne, CH-3010 Berne, Switzerland
3Section of Oral Implantology and Prosthetic Dentistry, Department of Oral Function, Academic Center for Dentistry Amsterdam (ACTA), NL-1066 EA Amsterdam, The Netherlands
4ITI Research Institute for Dental and Skeletal Biology, University of Berne, CH-3010 Berne, Switzerland
5Progentix BV, Prof. Bronkhorstlaan 10, NL-3723 MB Bilthoven, The Netherlands

Received 18 February 2007; revised 25 May 2007; accepted 7 June 2007
Published online 26 September 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jbm.a.31559

Abstract: The repair of bone defects with biomaterials depends on a sufficient vascularization of the implantation site. We analyzed the effect of pore size on the vascularization and osseointegration of biphasic calcium phosphate particles, which were implanted into critical-sized cranial defects in \textit{Balb/c} mice. Dense particles and particles with pore sizes in the ranges 40–70, 70–140, 140–210, and 210–280 \textmu m were tested (\(n = 6\) animals per group). Angiogenesis, vascularization, and leukocyte-endothelium interactions were monitored for 28 days by intravital microscopy. The formation of new bone and the bone-interface contact (BIC) were determined histomorphometrically. Twenty-eight days after implantation, the functional capillary density was significantly higher with ceramic particles whose pore sizes exceeded 140 \textmu m [140–210 \textmu m: 6.6 (\pm 0.8) mm/mm\(^2\); 210–280 \textmu m: 7.3 (\pm 0.6) mm/mm\(^2\)] than with those whose pore sizes were lesser than 140 \textmu m [40–70 \textmu m: 5.3 (\pm 0.4) mm/mm\(^2\); 70–140 \textmu m: 5.6 (\pm 0.3) mm/mm\(^2\)] or with dense particles [5.7 (\pm 0.8) mm/mm\(^2\)]. The volume of newly-formed bone deposited within the implants increased as the pore size increased [40–70 \textmu m: 0.07 (\pm 0.02) mm\(^3\); 70–140 \textmu m: 0.10 (\pm 0.06) mm\(^3\); 140–210 \textmu m: 0.13 (\pm 0.05) mm\(^3\); 210–280 \textmu m: 0.15 (\pm 0.06) mm\(^3\)]. Similar results were observed for the BIC. The data demonstrates pore size to be a critical parameter governing the dynamic processes of vascularization and osseointegration of bone substitutes. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res 85A: 777–786, 2008

Key words: bone substitute; histomorphometry; intravital microscopy; osseointegration; vascularization

INTRODUCTION

Skeletal defects generated by the resection of bone tumors or by trauma are usually reconstructed with autologous grafts of cortical or cancellous bone harvested from the iliac crest. However, the harvest of bone from an autologous source is disadvantageous in several respects: the supply of material is limited, its excision is associated with donor-site morbidity, and the procedure prolongs the time of surgery.\(^1\) Consequently, there is a growing interest in the development of biomaterials that can integrate with existing bone, can be turned over, and be subsequently replaced by newly-formed osseous tissue. Vascularization is crucial for the development and the repair of most tissues, and is a precondition for the healing of bone defects.\(^2\)–\(^4\) Revascularization of the implantation site ensures an adequate supply of nutrients, the prompt removal of metabolic by-products, and the delivery of cells and growth factors that support the formation of osseous tissue. It is thus crucial for the remodeling of bone substitutes and their replacement with osseous tissue.

The dynamics and the extent of bone ingrowth into porous calcium phosphate ceramics are known to depend upon the pore size of the material.\(^5\)–\(^10\)
Furthermore, bone substitutes with an interconnected system of pores can be invaded by blood vessels, enabling the development of a dense vascular meshwork. We therefore hypothesized that the pore size of bone substitutes influences the ingrowth not only of osseous tissue but also of capillary sprouts, and thus angiogenesis, thereby impacting the healing process after implantation.

Intravitral microscopy permits a quantitative as well as a qualitative analysis of angiogenesis, the microcirculation, microvascular perfusion, leukocyte–endothelium interaction (LEI), and endothelial leakage.11–13 The method has been used to investigate the cerebral microcirculation in rats and the angiogenesis of malignant cranial tumors in mice.14–19 Although the cranium has been used as an implantation site for bone substitutes in rodents,20–22 intravital microscopy has not been applied to investigate the angiogenesis and microcirculation of the implanted biomaterials.

The aim of the present study was to evaluate the influence of the pore size of a particulate calcium phosphate ceramic on vascularization and bone formation within critical-sized cranial defects in mice. Vascularization was quantified by intravitral microscopy and bone formation by histomorphometry.

MATERIALS AND METHODS

Preparation of the ceramic bone substitute with different pore sizes

Porous, biphasic calcium phosphate ceramics composed of 80% hydroxyapatite and 20% β-tricalcium phosphate were prepared from calcium phosphate apatite powder with a calcium phosphate ratio of 1.66. First, porous green bodies were prepared from the apatite powder by adding 0.5% hydrogen peroxide solution and naphthalene particles (Fluka Chemie, Zwijndrecht, The Netherlands) at 60°C. The naphthalene particles and the aqueous phase were subsequently evaporated at 80°C. Porous calcium phosphate ceramics were obtained by sintering the dried porous green bodies at 1150°C for 8 h.23–25

Different pore sizes were generated using naphthalene particles of different sizes: (i) naphthalene particles with sizes of 300–400 μm generated pores in the size range 210–280 μm; (ii) naphthalene particles with sizes of 212–300 μm generated pores in the size range 140–210 μm; (iii) naphthalene particles with sizes of 106–212 μm generated pores in the size range 70–140 μm; and (iv) naphthalene particles with sizes of 75–106 μm generated pores in the size range 40–70 μm. The overall porosity of the ceramic bodies was 75% (±5%) [macropores (>10 μm); approximately 50%; micropores (0.1–10 μm); approximately 25%].

A dense ceramic body was prepared by mixing the apatite powder with 0.5% hydrogen peroxide solution in the absence of naphthalene particles. This material manifested no macroporous structure. Micropores (0.1–10 μm) were engendered by the presence of hydrogen peroxide.

For each of the five groups, ceramic particles with sizes of 0.5–1.0 mm were prepared from the ceramic bodies, cleaned, and autoclaved at 121°C for 30 min prior to use.

Preparation of cranial-window defects

Thirty-six 8-week-old male Balb/c mice (BALB7cAnNCrl; Charles River Wiga, Germany) were used for this study, which was approved by the local committee for animal experimentation (BVET, Berne, Switzerland) and conducted in accordance with its regulations.

Cranial-window defects were created in the calvariae for the implantation of the ceramic particles. The animal model followed previously described cranial window preparations applied to investigate the cerebral microcirculation and the microcirculation of malignant tumors in mice.14,26–29 All surgical procedures were performed within a laminar-flow unit under strictly aseptic conditions. The mice were anaesthesitized with a mixture of fentanyl (50 μg/kg of body weight), medetomidine (500 μg/kg of body weight), and climalozole (5 mg/kg of body weight), which was injected intraperitoneally. After shaving and disinfection of the scalp with 70% ethanol, the mice were secured within a custom-made stereotactic device. An oval area of the scalp (~15 × 10 mm²) was removed to expose the frontal and parietal bones with the coronal, lambdoid and sagittal sutures [Fig. 1(A)]. Using a dental drilling device (Nouvac MD 10, Nouvac AG, Switzerland), a circular, 4-mm-diameter defect was generated within the calvarium, leaving only a thin layer of the internal tabula in place. The latter was then carefully lifted with a pair of fine forceps. After dividing the adhesions which attach the internal tabula to the sagittal sinus, the former was completely removed to create a full-thick-
ness defect [Fig. 1(B)]. Care was taken to avoid mechanical or thermal damage to the dura mater and the underlying brain tissue. If this occurred, the animal was killed immediately and excluded from the study. If bleeding from the bone occurred, the surgical procedure was interrupted to clear the site by swabbing with a sterile Q-tip. Ceramic particles from one of the five pore-size categories (n = 6 for each group) were then implanted within the defect. A control group was established, in which the defects were left empty (n = 6). To protect the tissue from dehydration and mechanical damage, the exposed site was covered with a circular, 7-mm-diameter glass slip (Assistent, Germany), which was secured to the bone margin with cement (a mixture of ethylcyanoacrylate glue; Pattex®; Blitz Kleber, Henkel, Germany; and a methacrylate polymer; GC Ostron®-powder; GC Europe, Belgium).

Intravital microscopy

During the first week of implantation, the defect site was monitored every 12 h using a stereotactic microscope under vertical illumination. The time at which newly-formed blood vessels invaded the implanted biomaterial was noted.

Intravital fluorescence video-microscopy was performed 7, 14, 21, and 28 days after implantation using a vertical illumination fluorescence microscope unit (Zeiss Axioplan 2, Zeiss, Germany) equipped with −2.5× and −20× objectives and with fluorescence filter systems for green and blue light. For the offline analysis, regions of interest were recorded on video-tapes using an S-VHS videocassette recorder, which was connected to a digital microscope camera. The microcirculation was rendered visible by an intravenous injection of the leukocyte marker rhodamin 6G (R4127, Sigma Aldrich; 90 µL of a 0.05% solution in 0.9% saline). The interaction between leukocytes and the vascular endothelium was visualized by an intravenous injection of the leukocyte marker rhodamin 6G (R4127, Sigma Aldrich; 90 µL of a 0.05% solution in 0.9% saline).

Offline analysis of vasculization, microhemodynamic variables, and LEI

The functional capillary density (FCD) within the implantation site was defined as the total length of the erythrocyte-perfused nutritive capillaries (in mm) per two-dimensional defect surface (in mm²). This parameter has been well established as a measure of the microvascular perfusion in various tissues. The offline analysis of FCD was performed on digital fluorescence images using Simple PCI software (Version 6.0, Compix Inc, Imaging Systems, Cranberry Township, USA).

Microhemodynamic parameters and the LEI were analyzed on digital images of the regions of interest. Six to eight such regions were evaluated per animal and per time point. The implantation site was divided into four quarters. Two regions of interest in each of the four fields were photographed: one in the periphery and one in the centre.

Inconsistencies in microhemodynamic variables can arise from changes in the mechanical or the morphological properties of the vessels. To avoid this problem, 100-µm-long segments of vessel with similar diameters and running were analyzed per animal and per time point. Each of these regions was monitored for 30 s for the measurements of microhemodynamic variables and for the evaluation of LEI. Vessel diameters (D), were measured perpendicular to the vessel path and expressed in micrometers. The centreline velocity of the blood stream (vcentre) was determined by measuring the length (L) within a vessel segment over which leukocytes coursed within a defined time (t): vcentre = L/t (µm/s).

Leukocytes were classified as free-floating, rolling, or sticking according to their interactions with the microvascular endothelium. The number of sticking leukocytes (NSti) was expressed as the numerical density of cells (WBCSti) that adhered firmly to the inner surface of the investigated 100-µm-long vessel segment during the 30-s observation period: WBCSti = NSti × 10^6/[π × D × 100] (cells/mm²). Rolling leukocytes were defined as a population of cells that interacts transiently with the vessel wall, and that have a velocity at least 50% lower than vcentre. The rolling count (WBCRol) was expressed as: WBCRol = (NRol/NFlo) × 100 (%), where NRol is the number of rolling leukocytes and NFlo is the number of free-floating ones. Leukocyte flux (WBCFlux) was defined as the number of free-floating leukocytes that passed a vessel cross-section within a certain time. Leukocyte flux was normalized for the cross-sectional area of the observed microvessel and the observation time (t): WBCFlux = NFlo × 10^6/[π × D × t] (cells/mm²/s). The apparent shear rate of the vessel wall (γ) was derived from Poiseuille’s law for a Newtonian fluid: γ = (vcentre/D) × 8 (1/s). Blood flow (Q) was calculated as: Q = vcentre × D^2 × [π]/4000 (pl/s).

TABLE I

<table>
<thead>
<tr>
<th>Pore Size (µm)</th>
<th>First Appearance of Vessels (hours after implantation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210–280</td>
<td>106 ± 14* ***</td>
</tr>
<tr>
<td>140–210</td>
<td>111 ± 11* ***</td>
</tr>
<tr>
<td>70–140</td>
<td>132 ± 10</td>
</tr>
<tr>
<td>40–70</td>
<td>135 ± 9</td>
</tr>
<tr>
<td>Dense ceramics</td>
<td>141 ± 13</td>
</tr>
<tr>
<td>Control (no ceramic)</td>
<td>132 ± 17</td>
</tr>
</tbody>
</table>

Angiogenesis within the implantation site was investigated using intravital microscopy. The appearance of newly formed vessels was observed at 12-h intervals. Mean values ± standard deviation are represented (n = 6 for each group).

* p < 0.05 vs. dense ceramics.
* p < 0.05 vs. 40–70 µm.
** p < 0.05 vs. 70–140 µm.
Histomorphometry

At the end of the intravital observation period (28 days), the mice were killed with CO₂. The implanted material was immediately excised together with the surrounding calvarial and brain tissue for the histomorphometric analysis. Each specimen was chemically fixed in buffered 4% paraformaldehyde solution, dehydrated in ethanol, and embedded in methylmethacrylate according to the procedure described by Erben et al. The embedded material was cut perpendicular to the sagittal plane according to a systematic random sampling protocol: 300-μm-thick sections, separated by a constant distance of 300 μm, were produced, with a random start within 200 μm of the left-hand margin of the defect. Each specimen yielded five serial sections. The sections were surface stained with McNeal’s tetrachrome.

The volume of newly-formed bone was quantified on light microscopic images of the sections using Cavalieri’s method. The surface area density of bone and the bone–interface contact (BIC) area were determined using the cycloid test system described by Baddeley et al.

Statistics

All numerical data are presented as mean values together with the standard deviation. The data were statistically evaluated by ANOVA using SigmaStat® software for Windows (Version 3.01, Systat Software, San Jose, CA, USA). Pairwise multiple comparisons were made using the Student–Newman–Keuls method. Differences were considered to be statistically significant if the p-value was less than 0.05. For the statistical analysis of correlations, Pearson’s product moment was calculated.

RESULTS

Vascularization of the ceramic material with different pore sizes

Angiogenic sprouting and the development of a vascular network were monitored by intravital microscopy. Vessel formation occurred significantly earlier in ceramic particles whose pore sizes exceeded 140 μm (pore sizes 140–210 μm: 111 ± 11 h; pore sizes 210–280 μm: 106 ± 15 h) than with particles whose pore sizes were smaller than 140 μm (pore sizes 40–70 μm: 135 ± 9 h; pore sizes 70–140 μm: 132 ± 10 h) or with dense particles (141 ± 13 h) (Table I).

<table>
<thead>
<tr>
<th>Table II</th>
<th>Microhemodynamic Variables for Sprouting Vessels Penetrating the Ceramic Materials With Different Pore Sizes, 14 and 28 days after Implantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pore Size (μm)</td>
<td>Day after Implantation</td>
</tr>
<tr>
<td>Control (no ceramic)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Dense ceramics</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>40–70</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>70–140</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>140–210</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>210–280</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

The microhemodynamic variables were analyzed on days 14 and 28 by intravital microscopy on 6–8 vessel segments per time-point and animal. In none of the experimental groups did the values for any of the four parameters differ significantly from those in the control group at either of the two time-points. Mean values ± standard deviation are represented (n = 6 for each group and time-point).
In the control (empty) defects, the first signs of vascularization were observed after 132 ± 17 h. In all groups, the capillary sprouts arose from vessels located within the surrounding bone.

Between the 7th and the 28th day of intravital observation, the FCD progressively increased in all groups (Fig. 2). By day 28, the FCD was higher in ceramic particles whose pore sizes exceeded 140 μm (pore sizes 140–210 μm: 6.6 ± 0.8 mm/mm²; pore size 210–280 μm: 7.3 ± 0.6 mm/mm²) than with either those whose pore sizes were smaller than 140 μm (pore sizes 40–70 μm: 5.3 ± 0.4 mm/mm²; pore sizes 70–140 μm: 5.6 ± 0.3 mm/mm²) or dense particles (5.7 ± 0.8 mm/mm²). The FCDs for the two groups with pore sizes exceeding 140 μm did not differ significantly from each during the monitoring period (7–28 days). For the two groups with pore sizes smaller than 140 μm, the differences between the FCDs tended to increase with time, with higher values being registered for the larger (70–140 μm) than for the smaller (40–70 μm) ones. However, the differences did not attain statistical significance at any point in time.

Microhemodynamic variables and LEI

To ascertain whether the ceramic particles elicited an immune reaction within the host tissue, several microhemodynamic variables (Table II), as well as the LEI (Fig. 3), were determined on the 14th and the 28th days of intravital monitoring. In none of the groups were any of the parameters elevated above control values.

Bone formation

The volume of newly-formed bone (Table III) and the BIC (Table IV) were determined histomorphometrically 28 days after surgery for each of the five experimental groups and the control.

The volume of newly-formed bone deposited between the ceramic particles (V Bone ext. in Table III) was greater in each of the four porous-ceramic groups than in the dense-ceramic one. The volume of bone laid down within the pores of the ceramic material (V Bone pores in Table III) decreased with decreasing pore size. The values for the smallest and the largest pore sizes differed significantly from each other (p < 0.05; Table III). Similar trends were observed for the bone volume density (total volume of newly-formed bone divided by the volume of the defect from which the volume of the ceramic material has been subtracted) (Table III).

BIC was defined as the ratio of the ceramic surface that was covered with new bone to the total ceramic surface. The BIC for the internal (pore) surface of the ceramic particles was significantly larger in the two groups with pore sizes exceeding 140 μm than in either of the two groups with pore sizes less than

Figure 3. LEI was analyzed on days 14 and 28 to ascertain whether the ceramics elicited an immune response within the host tissue. (A) WBC \(_{\text{Flux}}\): number of free-floating leukocytes that passed a vessel cross-section within a certain time. (B) WBC \(_{\text{Rol}}\): number of rolling leukocytes divided by the number of free-floating ones. Rolling leukocytes are defined as a population of cells that interacts transiently with the vessel wall. (C) WBC \(_{\text{Sti}}\): numerical density of leukocytes that attached firmly to the inner surface of the investigated 100-μm-long vessel segment during the 30-s observation period. Data are represented as mean values ± SD (n = 6 for each group and time point). In none of the experimental groups did the values for any of the three parameters differ significantly from those in the control group at either of the two junctures.
140 μm (Table IV). A similar trend was observed when the BIC was calculated for the external surface (Table IV). Since the BIC does not take into account differences in the surface areas of the ceramic materials and is representing a relative parameter, the surface area of the ceramic material and the surface area of newly-formed bone in contact with the material were thus determined for each group. The external surface area of the ceramic material (excluding the surface furnished by the pores) was similar in each group (Table IV), while the internal surface area of the ceramic material increased with decreasing pore size. However, independently of increasing internal surface areas of ceramics with small pores, the surface area of newly-formed bone was larger in association with ceramic particles whose pore sizes exceeded 140 μm.

A strong positive correlation existed between the BIC for the macropores of the ceramic material and FCD ($R^2 = 0.92$, $p < 0.001$). Albeit less strong, a positive correlation also existed between the volume of newly-formed bone deposited within the macropores of the ceramic material and FCD ($R^2 = 0.66$, $p < 0.001$) (Fig. 4). Twenty-eight days after surgery, the control defects had not undergone spontaneous repair (Fig. 5), thereby confirming that the 4-mm-diameter lesions were of critical size.

DISCUSSION

Angiogenesis, which ultimately leads to functional vascularization, is crucial for bone formation and for the substitution of biomaterials with osseous tissue.

TABLE III

<table>
<thead>
<tr>
<th>Pore Size (μm)</th>
<th>V Def. (mm³)</th>
<th>V Cer (mm³)</th>
<th>V Pore (mm³)</th>
<th>V Bone Ext. (mm³)</th>
<th>V Bone Pores (mm³)</th>
<th>Vₕ Bone Ext. (mm³)</th>
<th>Vₕ Bone Pores (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210–280</td>
<td>8.1 ± 1.6</td>
<td>5.1 ± 1.1</td>
<td>1.3 ± 0.4</td>
<td>0.77 ± 0.21</td>
<td>0.15 ± 0.06</td>
<td>0.27 ± 0.08</td>
<td>0.27 ± 0.10</td>
</tr>
<tr>
<td>140–210</td>
<td>9.2 ± 1.5</td>
<td>5.5 ± 1.4</td>
<td>1.4 ± 0.5</td>
<td>0.79 ± 0.21</td>
<td>0.13 ± 0.05</td>
<td>0.21 ± 0.04</td>
<td>0.23 ± 0.07</td>
</tr>
<tr>
<td>70–140</td>
<td>8.7 ± 1.9</td>
<td>5.2 ± 1.2</td>
<td>1.3 ± 0.3</td>
<td>0.63 ± 0.11</td>
<td>0.10 ± 0.06</td>
<td>0.19 ± 0.05</td>
<td>0.19 ± 0.11</td>
</tr>
<tr>
<td>40–70</td>
<td>8.0 ± 1.6</td>
<td>5.1 ± 0.9</td>
<td>1.3 ± 0.3</td>
<td>0.54 ± 0.11</td>
<td>0.07 ± 0.02</td>
<td>0.22 ± 0.09</td>
<td>0.12 ± 0.04</td>
</tr>
<tr>
<td>Dense ceramics</td>
<td>9.3 ± 0.8</td>
<td>5.9 ± 0.9</td>
<td>n.d.</td>
<td>0.39 ± 0.09</td>
<td>n.d.</td>
<td>0.12 ± 0.03</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Bone volumes and bone volume densities were determined with quantitative histomorphometry using Cavalieri’s method. V Def.: volume of the defect; V Cer.: volume of the ceramic material; V Pore: volume of the macropores; V Bone ext.: volume of bone formed outside of the ceramic particles; V Bone pores: volume of bone deposited within the macropores; Vₕ Bone pores: volume density ratio of bone formed outside of the ceramic particles [new bone volume/defect volume-ceramic volume]; V Bone pores: volume density ratio of bone deposited within the macropores [bone volume in macropores/volume of macropores]. Mean values ± standard deviation are represented ($n = 6$ for each group).

*p < 0.05 vs. dense ceramics.

**p < 0.05 vs. 40–70 μm.

TABLE IV

<table>
<thead>
<tr>
<th>Pore Size (μm)</th>
<th>BIC Ext. (%)</th>
<th>BIC Pores (%)</th>
<th>Sa Cer. Ext. (mm²)</th>
<th>Sa Cer. Pores (mm²)</th>
<th>Sa Bone Ext. (mm²)</th>
<th>Sa Bone Pores (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210–280</td>
<td>38.0 ± 9.8</td>
<td>24.3 ± 6.3</td>
<td>42.3 ± 9.1</td>
<td>41.4 ± 13.7</td>
<td>16.0 ± 4.6</td>
<td>10.0 ± 4.1</td>
</tr>
<tr>
<td>140–210</td>
<td>31.8 ± 6.3</td>
<td>19.7 ± 3.5</td>
<td>50.7 ± 6.7</td>
<td>44.7 ± 16.0</td>
<td>16.2 ± 3.9</td>
<td>9.1 ± 4.2</td>
</tr>
<tr>
<td>70–140</td>
<td>26.0 ± 7.3</td>
<td>8.9 ± 2.4</td>
<td>48.4 ± 12.2</td>
<td>51.7 ± 13.0</td>
<td>11.9 ± 1.7</td>
<td>4.5 ± 1.2</td>
</tr>
<tr>
<td>40–70</td>
<td>25.4 ± 6.6</td>
<td>6.4 ± 2.9</td>
<td>40.8 ± 8.0</td>
<td>68.7 ± 17.7</td>
<td>10.4 ± 3.5</td>
<td>4.4 ± 2.1</td>
</tr>
<tr>
<td>Dense ceramics</td>
<td>21.0 ± 3.7</td>
<td>n.d.</td>
<td>43.8 ± 4.8</td>
<td>n.d.</td>
<td>9.2 ± 1.9</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

The BIC ratio and the surface areas of the ceramics and of newly-formed bone were quantified histomorphometrically. BIC ext.: BIC ratio for the external surface of the ceramic particles, expressed as a percentage; BIC pores: BIC ratio for the macropore surface, expressed as a percentage; Sa Cer. ext.: surface area of the ceramic particles, excluding the macropores; Sa Cer. pores: surface area of the macropores; Sa Bone ext.: surface area of newly-formed bone in contact with the outside of the ceramic materials (viz., excluding the macropores); Sa Bone pores: surface area of newly-formed bone contacting the macropore surface. Mean values (± standard deviation) are represented ($n = 6$ for each group).

*p < 0.05 vs. dense ceramics.

**p < 0.05 vs. 40–70 μm.

**p < 0.05 vs. 70–140 μm.
Porous bone substitutes permit vessel ingrowth and thus facilitate osteogenesis. Since the pore size of bone substitutes may be a limiting factor for the ingrowth of sprouting capillaries and osseous tissue, we investigated the influence of this parameter on vascularization and bone formation.

As a biomaterial, we used particles of a biphasic calcium phosphate ceramic with different pore sizes. A newly established cranial window preparation in Balb/c mice served as our model, and the calvarium as the site for implantation. For a reliable investigation of osseointegration, the biomaterial needs to be implanted into defects that do not heal spontaneously, namely into critical-sized lesions. Aalami et al.20 have demonstrated that in adult mice, 4-mm-diameter cranial defects do not heal spontaneously during a course of 8 weeks. We thus created 4-mm-diameter calvarial defects, which, when left empty, manifested no evidence of spontaneous repair 28 days after surgery. Angiogenesis and vascularization were monitored by intravital microscopy during the first 28 days of implantation, and bone formation by histomorphometry at the end of this monitoring period.

Histological studies on angiogenesis and bone formation within and around biomaterials have revealed the deposition of osseous tissue to be preceded by the ingrowth of blood capillaries.9,41 Kuboki et al.9 have shown that the pore size of hydroxyapatite particles exerts a direct influence on angiogenesis and bone formation. When using particles with pore sizes ranging from 90 to 110 \(\mu\)m, cartilage formation was followed by bone formation similar to the process of endochondral bone formation. The pores were first penetrated by mesenchymal stem cells and then filled with cartilage tissue. Blood vessels subsequently invaded the cartilage tissue, and their presence induced the onset of osteogenesis. When using particles with a pore size of 350 \(\mu\)m, the migration of mesenchymal stem cells into the pores was accompanied by vascular invasion, which was followed by intramembranous ossification without detectable cartilage formation.

In our study, intravital microscopy of the implanted ceramics revealed the dynamics of angiogenesis and vascularization to depend upon the pore size of the material. The onset of blood-vessel formation occurred after a shorter time period, and the FCD was higher in association with ceramics whose pore sizes exceeded 140 \(\mu\)m than with either those whose pore sizes were smaller than 140 \(\mu\)m or dense particles. Since angiogenesis and the microcirculation can be influenced by an immune response against an implanted biomaterial,42,43 we evaluated several microhemodynamic variables and the interaction between leukocytes and the vascular endothelium. For each parameter, similar values were recorded in each experimental group and in the controls. Hence, the observed differences in angiogenesis and vascularization were indeed a function of pore size, and not attributable to variations in host immunoreactivity to the implanted material.

The optimal osteoconductivity of biomaterials is achieved with pore sizes ranging from 300 to 400 \(\mu\)m.5,6,9,10 The minimum pore size that is required to generate mineralized bone is considered to be 50 \(\mu\)m.5-7,10 Our findings are consistent with these data. Ceramics with pore sizes in the range 40–70 \(\mu\)m supported bone formation, and the volume of osseous

Figure 4. Graphs depicting the correlations existing between FCD (x-axes) and either (A) the BIC ratio of the macropores of the ceramic material ($R^2 = 0.92$, $p < 0.001$) or (B) the volume of bone deposited within the macropores ($R^2 = 0.66$, $p < 0.001$). The correlation between the sets of data were statistically analyzed by calculating Pearson’s product moment.
tissue deposited within the ceramics increased with increasing pore size.

Recently, the surface area of biphasic calcium phosphate ceramic implants has been shown to influence bone formation at an ectopic (intramuscular) site in goats. Twelve weeks after surgery, higher BIC ratios and larger volumes of newly-formed bone were observed in ceramic particles that had greater surface areas. In terms of macroporosity and pore size, the ceramics were similar. The increase in surface area was achieved by increasing the microporosity (pores < 10 μm). In our study, ceramic particles with larger surface areas were associated not with higher but with lower BIC ratios (both externally and within the macropores) and bone volumes. These discrepant findings may be due to the different sizes of the macropores in each study. In the investigation conducted by Habibovic et al.,23 the diameters of the macropores ranged from 200 to 400 μm, and their size remained unchanged as the surface area of the material was increased. In our study, the sizes of the macropores ranged from 40 to

Figure 5. Light micrographs of 300-μm-thick vertical sections through cranial defects, 28 days after surgery. The sections were surface-stained with McNeal’s tetrachrome. Ceramic particles (c): brown/red; newly-formed bone (b): light pink; pre-existing bone of the calvarium [visible only in (A)]: magenta; grey matter of the brain: blue/violet. (A) Control (untreated) defect without implantation of ceramic particles. The lesion has not undergone spontaneous repair. The defect has been lined with a thin layer of connective tissue (black/white arrows). (B) Dense ceramic particles. Only small quantities of bone (b) have been deposited sporadically on and around the particles (c). (C) Ceramic particles with pores in the size range 40–70 μm. These particles (c) have been partially surrounded by newly-formed bone (b). However, the small macropores (three of which are outlined in white) contained only small deposits of newly-formed bone (pink). (D) Ceramic particles with pores in the size range 210–280 μm. These ceramic particles (c) have likewise been surrounded by newly-formed bone. But these large macropores (two of which are outlined in white) have been filled with newly-formed bone (pink) for the most part. Scale bars: (A): 1000 μm; (B, C, D): 200 μm.
vascularization and osseointegration of bone substitutes

280 μm, and downsizing the macropores was associated with an increase in the surface area of the material. Intravital microscopy revealed a reduction in pore size to be associated with a decrease in the vascularization of the material. Furthermore, vascularization was positively correlated with both the volume of newly-formed bone deposited within the macropores and the BIC with the macropores. Although ceramic particles with smaller macropores had larger surface areas, their osteoconductivity was impaired because they were less well vascularized. An amplification of the surface area of a material without reducing the size of the macropores may have a positive influence on bone formation, but downsizing the macropores to increase the surface area of a material does not appear to be beneficial. If the macropores are too small, vascularization of the biomaterial may be highly constrained, thereby resulting in deficient bone formation and an impaired osseointegration of the implant. At first sight, this explanation does not appear to be tenable for the influence of pore size on bone formation on the outside of the ceramic particles. However, since vascularization and bone formation were more pronounced in ceramic particles with larger macropores, the surrounding microenvironment within the implantation site may be likewise more osteogenic. Consequently, the osteogenic response in the vicinity of larger-pored ceramics will also be heightened.

For their optimal osseointegration, bone substitutes should not only facilitate the ingrowth of vessels and osseous tissue but also serve as a mechanically stable scaffold for these processes. Amongst other factors, porosity and pore size have an important influence on the mechanical stability of biomaterials.44-49 Although larger pores ameliorate vascular ingrowth and bone formation, they compromise mechanical stability.44,45,49 Scaffolds with a porosity of 32–40% and a median pore size of 210 μm have been shown to have a lower compressive modulus than those with a similar porosity but a median pore size of 100 μm.45 Due to the opposing effects of pore size on the biological and the mechanical properties of bone substitutes, their structural characteristics must necessarily be a compromise between the support of vascularization and bone formation and a decrease in mechanical strength.

In conclusion, by means of intravital microscopy and histomorphometry, we have demonstrated the pore size of a biphasic calcium phosphate ceramic to be a crucial structural parameter in the vascularization and osseointegration of this material in vivo. Downsizing of the macropores reduced the vascularization of the ceramics and the formation of bone therein, and impaired their integration into bone. However, it should be borne in mind that large-pored bone substitutes are mechanically less stable than small-pored ones. Hence, pore size must be adjusted so as to establish a compromise between the biological and the mechanical properties of the material.

References

2. Kessler S, Mayr-Wohlfart U, Ignatiu A, Puhl W, Claes L, Gunther KP. The impact of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) on osseointegration, degra
dation and biomechanical properties of a synthetic bone sub-
4. Tarkka T, Sipola A, Jamsa T, Soini Y, Yla-Herttuala S, Tuuk-
kanen J, Hautala T. Adenoviral VEGF-A gene transfer indu-
5. Bohyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optim-
um pore size for the fixation of porous-surfaced metal
implants by the ingrowth of bone. Clin Orthop Relat Relat
6. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW. Osteoconduction at porous hydroxyapatite with
7. Itala AI, Ylanen HO, Ekholin C, Karlsson KH, Aro HT. Pore
8. Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Mur-
ata M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogen-
esis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis.
S105–S115.
10. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls
BMP-induced osteogenesis. J Biochem (Tokyo) 1997;121:317–
324.
12. Menger MD, Lehr HA. Scope and perspectives of intravital
microscopy—Bridge over from in vitro to in vivo. Immunol
13. Sckell A, Leunig M. Dorsal skinfold chamber preparation in
Combined inhibition of vascular endothelial growth factor
and platelet-derived growth factor signaling: Effects on the
angiogenesis, microcirculation, and growth of orthotopic
15. Ishikawa M, Kajimura M, Adachi T, Maruyama K, Makino
N, Goda N, Yamauchi T, Sekizuka E, Suematsu M. Carbon
monoxide from heme oxygenase-2 Is a tonic regulator against
NO-dependent vasodilatation in the adult rat cerebral micro-

